"INITIATION SYSTEM "?

It is a means of starting off bulk explosives reliably, and at the correct time and in the correct sequence

Initiating Explosives System

• A combination of detonators, signal tube, detonating cord, safety fuse, igniter cord or other devices designed to initiate the detonation of a charge or combination of charges in blasting
• Usually a chain reaction of smaller charges initiating larger charges with communication between the initiators and the main charges via some signal line either electrical, a core loaded explosive or a confined dust explosion
INITIATION SYSTEMS

- **Starter unit**
 - initial signal to start the blast (Exploder)

- **Surface systems**
 - transmission of signal & delay timing across the surface of the blast (Det-cord)

- **In hole unit**
 - transmission of signal down the hole, plus delay timing & detonator energy

INITIATING DEVICES

Nonelectric
Capped Fuses
Why, why not?
How, ... tools?
Rules?
Delays?
Hazards?

Cap & Fuse

Cap & Fuse

Detonating Cord Construction
PETN Core
Plastic Extrusion
Plastic Yarns
Overwrapping
Detonating Cords

<table>
<thead>
<tr>
<th>Product</th>
<th>Colour</th>
<th>Nominal Core Load g/m PETN</th>
<th>External Diameter mm</th>
<th>UVD mm</th>
<th>Tensile Strength KgF</th>
<th>Grit Weight</th>
<th>Application and Special Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniflex</td>
<td></td>
<td>3.6-4.0</td>
<td>7.0</td>
<td>105-110</td>
<td>27.0 KgF</td>
<td>3.6 g/m</td>
<td>A light grade cord used mainly for trunk lines on the surface.</td>
</tr>
<tr>
<td>Powerflex</td>
<td>Red</td>
<td>4.5-4.8</td>
<td>7.1-7.5</td>
<td>110-115</td>
<td>26.0 KgF</td>
<td>5 g/m</td>
<td>Universal usage – trunk and branch lines — surface and underground.</td>
</tr>
<tr>
<td>Trunkcord</td>
<td>White</td>
<td>4.6-5.3</td>
<td>7.1-7.5</td>
<td>125-130</td>
<td>34.6 KgF</td>
<td>5 g/m</td>
<td>As for REDCORDER where extra strength and abrasion resistance are required. Fire-off instructions vary from order.</td>
</tr>
<tr>
<td>Redcord</td>
<td></td>
<td>4.6-5.3</td>
<td>7.1-7.5</td>
<td>175-180</td>
<td>20.2 KgF</td>
<td>10 g/m</td>
<td>Mining iron ore and other very abrasive materials. Has a tough braided cover over the plastic sheathing.</td>
</tr>
<tr>
<td>Shearcord</td>
<td>Orange</td>
<td>10.5</td>
<td>6.4</td>
<td>120</td>
<td>26.9 KgF</td>
<td>70 g/m</td>
<td>Pre-cutting and smooth blasting. Stripping to finishing lines.</td>
</tr>
</tbody>
</table>

Detonating Chords

<table>
<thead>
<tr>
<th>Product</th>
<th>Colour</th>
<th>Nominal Core Load g/m PETN</th>
<th>External Diameter mm</th>
<th>UVD mm</th>
<th>Tensile Strength KgF</th>
<th>Grit Weight</th>
<th>Application and Special Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLUE "CORTEX"</td>
<td>Blue</td>
<td>3.6-4.0</td>
<td>7.0</td>
<td>105-110</td>
<td>27.0 KgF</td>
<td>3.6 g/m</td>
<td>A light grade cord used mainly for trunk lines on the surface.</td>
</tr>
<tr>
<td>REDCORDER</td>
<td>Red</td>
<td>4.5-4.8</td>
<td>7.1-7.5</td>
<td>110-115</td>
<td>26.0 KgF</td>
<td>5 g/m</td>
<td>Universal usage – trunk and branch lines — surface and underground.</td>
</tr>
<tr>
<td>FLEXCORD</td>
<td>White</td>
<td>4.6-5.3</td>
<td>7.1-7.5</td>
<td>125-130</td>
<td>34.6 KgF</td>
<td>5 g/m</td>
<td>As for REDCORDER where extra strength and abrasion resistance are required. Fire-off instructions vary from order.</td>
</tr>
<tr>
<td>TUFFCORD</td>
<td>Yellow</td>
<td>4.6-5.3</td>
<td>7.1-7.5</td>
<td>175-180</td>
<td>20.2 KgF</td>
<td>10 g/m</td>
<td>Mining iron ore and other very abrasive materials. Has a tough braided cover over the plastic sheathing.</td>
</tr>
<tr>
<td>"GEOFLEx"</td>
<td>Green</td>
<td>20.5-6.7</td>
<td>6.5-7.3</td>
<td>226</td>
<td>10.9 KgF</td>
<td>20 g/m</td>
<td>Land and marine seismic prospecting. Direct linear vibration of ANFO.</td>
</tr>
<tr>
<td>"GEOFLEx"</td>
<td>Pink</td>
<td>40.7-6.8</td>
<td>6.1-6.8</td>
<td>250</td>
<td>20.9 KgF</td>
<td>40 g/m</td>
<td>Land and marine seismic prospecting. Direct linear vibration of ANFU.</td>
</tr>
<tr>
<td>"SHEARCORD"</td>
<td>Orange</td>
<td>10.5</td>
<td>6.4</td>
<td>120</td>
<td>26.9 KgF</td>
<td>70 g/m</td>
<td>Pre-cutting and smooth blasting. Stripping to finishing lines.</td>
</tr>
</tbody>
</table>
Detonating Chord

Detonating Cord Properties

Strength - 70 - 100 kg
Stretch - ~10%
Compare to Signal Tube
Impact Resistance - 20 kgF
Compatibilities.

VOD - 7000 ms
Water Resistance
Oil Resistance

9.5 min
Detonating Cord Knots

- Double Clove Hitch: For Tying Downline to surface Trunkline
- Reef Knot: For Trunkline Extending

Cutting Detonating Cord

- Plastic Jaw: ✔️
- Other tools: ✗
Detonating relay Connectors (DRC)
Millis second Connector

- Plastic Cleats
- Yellow EXEL signal tube
- Nonelectric delay detonator

8 Strength cap
Fire Detonating cord ONLY

Surface Detonating Cord

- Delays: 9ms, 17ms, 25ms, 35ms, 42ms, 65ms, 100ms, 125ms, 150ms, 175ms, 200ms
Signal Tube NONEL Detonator

- **Hollow multi layered plastic tube**
- **Inside tube coated with HMX/aluminium dust**
- **Shock wave - 2100 m/s**
- **Cut tube allows in moisture causing misfire**

Nonel Tube Construction

92% Cyclo tetra methylene tetra nitramine\(^{[\text{HMX}]}\)
8% Paint Fine Aluminium
Coreload Limits 13mg/m +/- 2
10

ELECTRIC DETONATORS

a) Instantaneous Elect Det
b) “L” Series Millisecond Delay Det
c) Half Second (LP) Delay Det
d) Electronic Detonators

a) Magnadet Detonators
b) Magna Primer
Electric Detonator Systems

Instantaneous Electric Detonator Construction

1. **Ignition Composition**
 - Lead Mono-Nitro Resorconate + Potassium Chlorate

2. **Flashing Composition**
 - Potassium Chlorate + Charcoal

3. **Protective Coating**
 - Nitro Cellulose

Electric Detonator

- Base charge
- Neoprene plug
- Leadwires
- Fusehead
- Cnmp
- Metal foil
- Shorted & sheathed
- Bridgewire
- Solder
- Protection
- "Protected"
MS Delay Electric Dets

Half Second Delay Elect Dets
Electric Det

- Carrick coal mine detonators
- Ten delays (0-10)
- Delay interval = 30 sec

Exploders

Fig. 6: 'BEETHOVEN' Exploder
Fig. 7: NISSAN P-3-30 Shot Exploder
Exploders

What could Fire a Det?

- Batteries, power sources
- Electric equipment, cables
- Steel pipes, rail, conductors
- Lightning, ground currents
- Firing cables, leads alongside power lines
What could Fire a Det?

- Rock falls
- Pinch in machine
- Drop object, tools
- Drive, walk, crush
- Rough charging

What could Fire a Det?

- Friction on plastics, fabrics
- Sparks from equipment
- Hot exhaust
- Fires, welding
4. Generation of Electrostatic Charges

Charges may be generated on a person by static electricity. Materials such as plastic (PVC), rubber, wood, paper, clothing, fur, hair, etc. which might separate from each other may cause static electricity to accumulate on a person or earthed objects - a bench top or piece of equipment - in such a situation, static electricity may pass through to earth and cause a stray current of 10^-7 amperes for short periods under very favorable conditions. (Figure 1)

\[
I = 10^{-7} \text{ A}
\]

\[
R = 10^{10} \text{ Ohm}
\]

\[
V = 1000 \text{ V}
\]

\[
E = 0.6 \text{ mJ}
\]

\[
C = 300 \text{ pF} = 300 \times 10^{-12} \text{ F}
\]

Under dry conditions 5,000V was obtained. In this case 5 - 7.5kV - almost enough to provoke a normal feeling of discomfort.

Thus static charges on a person may cause the body to feel a sensation of discomfort or unpleasantness. However, if the charge is of such magnitude that it sparks to earth, it may cause a stray current of 10^-7 amperes for short periods under very favorable conditions. (Figure 1)

If the conductors are earthed it may cause a stray current of 10^-7 amperes for short periods under very favorable conditions.

This is a high value but quite capable of initiating some static electrical effects.

If in another case a person takes 10 steps on a carpet and acquires a potential of 2.5kV then the energy would be:

\[
E = \frac{1}{2} CV^2 = \frac{1}{2} \times 300 \times 10^{-12} \times (2.5 \times 10^3)^2 = 6.25 \text{ mJ}
\]

This is not a high value but quite capable of initiating some static electrical effects. If in another case a person takes 10 steps on a carpet and acquires a potential of 2.5kV then the energy would be:

\[
E = \frac{1}{2} CV^2 = \frac{1}{2} \times 300 \times 10^{-12} \times (2.5 \times 10^3)^2 = 6.25 \text{ mJ}
\]

This is not a high value but quite capable of initiating some static electrical effects.

If the conductors are earthed it may cause a stray current of 10^-7 amperes for short periods under very favorable conditions.

This is a high value but quite capable of initiating some static electrical effects. If in another case a person takes 10 steps on a carpet and acquires a potential of 2.5kV then the energy would be:

\[
E = \frac{1}{2} CV^2 = \frac{1}{2} \times 300 \times 10^{-12} \times (2.5 \times 10^3)^2 = 6.25 \text{ mJ}
\]

This is not a high value but quite capable of initiating some static electrical effects. If in another case a person takes 10 steps on a carpet and acquires a potential of 2.5kV then the energy would be:

\[
E = \frac{1}{2} CV^2 = \frac{1}{2} \times 300 \times 10^{-12} \times (2.5 \times 10^3)^2 = 6.25 \text{ mJ}
\]

This is not a high value but quite capable of initiating some static electrical effects. If in another case a person takes 10 steps on a carpet and acquires a potential of 2.5kV then the energy would be:

\[
E = \frac{1}{2} CV^2 = \frac{1}{2} \times 300 \times 10^{-12} \times (2.5 \times 10^3)^2 = 6.25 \text{ mJ}
\]

This is not a high value but quite capable of initiating some static electrical effects. If in another case a person takes 10 steps on a carpet and acquires a potential of 2.5kV then the energy would be:

\[
E = \frac{1}{2} CV^2 = \frac{1}{2} \times 300 \times 10^{-12} \times (2.5 \times 10^3)^2 = 6.25 \text{ mJ}
\]

This is not a high value but quite capable of initiating some static electrical effects. If in another case a person takes 10 steps on a carpet and acquires a potential of 2.5kV then the energy would be:

\[
E = \frac{1}{2} CV^2 = \frac{1}{2} \times 300 \times 10^{-12} \times (2.5 \times 10^3)^2 = 6.25 \text{ mJ}
\]

This is not a high value but quite capable of initiating some static electrical effects.
Connecting an Electric Starter Detonator.

- Secure Exploder
- Run out Firing Cable.
- Test (both open and closed circuit)
- Ensure exploder end "twitched"
- Attach electric detonator to firing line.
- Attach electric detonator to EXEL Signal tube.

Magnadet High Frequency Electric Det.

Concept:
Detonator wires are connected to a ring transformer consisting of a ferite ring – TOROID.

Toroid is frequency sensitive activated by the special AC powered exploder operating in the frequency range of 12 000 – 25 000 Hz. [AC]
Electronic detonator

Micro Chip
Electronic Detonators

- Loading, as for non-elecs, universal detonator.
- Fully programmable delay times using computer.
- Fully testable.
- Immune to stray currents - coded firing signal.

Initiation Summary

... a means of starting off bulk explosives *reliably*, and at the correct *time* and in the correct *sequence*
What would happen if a detonator fired in your hand?
Workshop

Initiation System

What is an initiation system?
What are the types of systems?
What is a delay detonator?
What types of delay detonators are there?
Describe safety aspects?
What hazards should you be aware of?

Top (Collar) Vs Bottom Initiation

Fig. 9 Collar initiation

Fig. 10 Collar promated ring detonated initiation
• Anzomex boosters are cast water proof primers, made principally of cast pentolite (mixture of PETN, TNT and other miner ingredients
 – High strength, and high densi
 – High VOD (7000 m/s)
 – Lower shock sensitivity, friction, impact.